The DF-60 is a member of the DF series of Electric EncodersTM, based on Netzer precision proprietary technology. The Electric EncoderTM offers many advantages - some unparalleled

- Low profile (10 mm)
- Hollow, floating shaft
- No bearings or other contacting elements
- High resolution and precision
- High tolerance to temperature extremes, shock, moisture, EMI, RFI and Magnetic fields
- Low weight
- Holistic signal generation
- Digital interfaces

General

Angular resolution	18-20 bit
Maximum tested static error	±0.020°
Extended accuracy static error	±0.010°
Maximum operational speed	1500 rpm
Measurement range	Unlimited rotation
Rotation direction	Adjustable CW/CCW*
Build In Test BIT	Optional

^{*} Default same direction from bottom side of the encoder

Mechanical

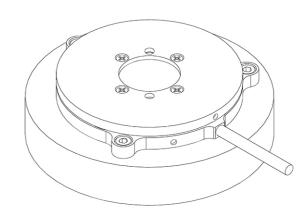
Allowable mounting eccentricity	±0.1 mm
Allowable axial mounting tolerance	±0.1 mm
Rotor inertia	10,154 gr · mm²
Total weight	40 gr
Outer Ø /Inner Ø/ Height	60 / 30 / 11.5 mm
Material (stator, rotor)	Aluminum
Nominal air gap (stator, rotor)	0.6 mm

The Electric Encoder[™] is unique in being holistic, i.e., its output reading is the averaged outcome of the whole area of the rotor, This feature makes the Electric Encoder[™] forgiving to mounting tolerances, mechanical wander etc.

The absence of components such as ball bearings, flexible couplers, glass disc, light sources and detectors, along with very low power consumption makes the Electric Encoder $^{\text{TM}}$ virtually failure free.

The internally shielded, DC operated Electric Encoder $^{\text{TM}}$ includes an electric field generator, a field receiver, a sinusoidal shaped dielectric rotor, and processing electronics.

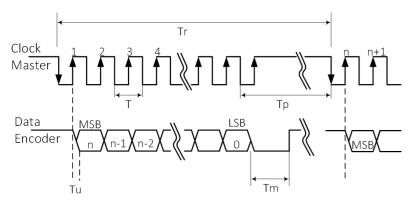
The output of Electric EncoderTM is a digital serial with absolute position single turn. The combination of precision, low profile, low weight and high reliability have made Netzer Precision encoders particularly suitable to a wide variety of industrial automation applications.

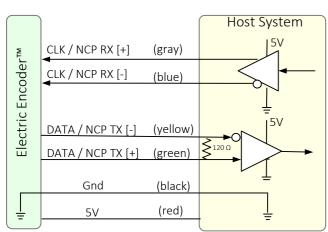

Electrical

Supply voltage	5V ± 5%
Interconnection	Shielded cable
Cable length	1,500 mm MAX

Environmental

EMC	IEC 6100-6-2, IEC 6100-6-4
Operating temperature range	-40°C to +85°C
Storage temperature	-50°C to +100°C
Relative humidity	98% Non condensing
Shock endurance	100 g for 11 ms
Vibration endurance	20 g 10 – 2000 Hz
Protection	IP 40





Digital SSi Interface

Synchronous Serial Interface (SSI) is a point to point serial interface standard between a master (e.g. controller) and a slave (e.g. sensor) for digital data transmission.

	Description	Recommendations
n	Total number of data bits	12 - 22
Т	Clock period	
f= 1/T	Clock frequency	0.5 - 2.0 MHz
Tu	Bit update time	200 nsec
Тр	Pause time	26 - ∞ µsec
Tm	Monoflop time	>25 µsec
Tr	Time between 2 adjacent requests	Tr > n*T+26 μsec
fr=1/Tr	Data request frequency	

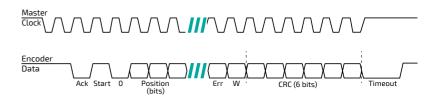
SSi / BiSS Output signal parameters

Signal latency	~250 µSec
Output code	Binary
Serial output	Differential RS-422
Clock	Differential RS-422
Clock frequency	0.5 ÷ 2.0 MHz
Position update rate (Max)	30 kHz
Current consumption	180 mA
SSi	
Monoflop time	25 μSec

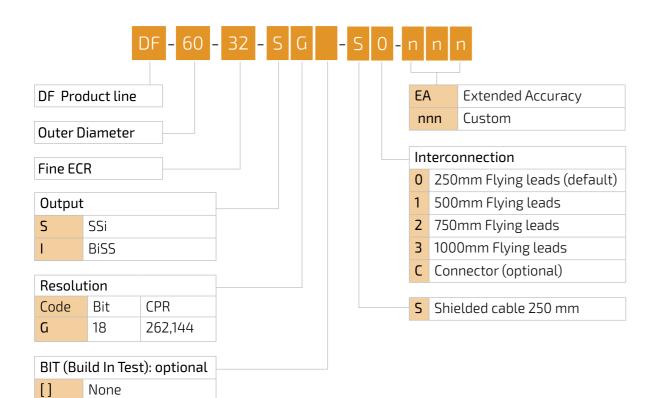
SSi / BiSS interface wires color code

Clock +	Grey	CL I
Clock -	Blue	Clock
Data -	Yellow	Data
Data +	Green	Dala
GND	Black	Ground
+5V	Red	Power supply

Software tools: (SSi / BiSS - C)


Advanced calibration and monitoring options are available by using the factory supplied **Electric Encoder Explorer software**, This facilitates proper mechanical mounting, offsets calibration and advanced signal monitoring.

Digital BiSS-C Interface

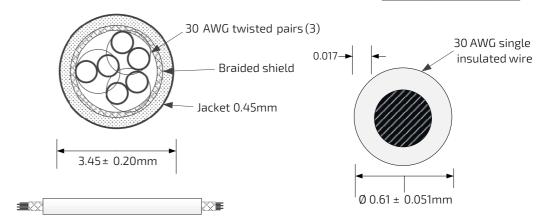

BiSS - C Interface is unidirectional serial synchronous protocol for digital data transmission where the Encoder acts as "slave" transmits data according to "Master" clock. The BiSS protocol is designed in B mode and C mode (continuous mode) .The BiSS-C interface as the SSi is based on RS-422 standards.

bit#		Description	Default	Length
28	Ack	Period during which the encoder calculates the absolute position, one clock cycle	0	1/clock
27	Start	Encoder signal for "start" data transmit	1	1 bit
26	"0"	"start" bit follower	0	1 bit
825	AP	Absolute Position encoder data		
7	Warn.	Warning	1	1 bit
6	Error	Error	1	1 bit
05	CRC	The CRC polynomial for position, error and warning data is: $x^6 + x^1 + x^0$. It is transmitted MSB first and inverted.		6 bits
		The start bit and "0" bit are omitted from the CRC calculation.		
	Time- out	Elapse between the sequential "start"request cycle's.		25 µs

Ordering Code

ABSOLUTE POSITION ROTARY ELECTRIC ENCODER™

Cable Information


Cable: 30 AWG twisted pair(3):2 (30 AWG 25/44 finned copper, $0.15 \text{ PFE to } \emptyset 0.6 \pm 0.05 \text{ OD}).$

Temperature rating: -60 to +150 Deg C.

Braided shield: Thinned copper braided 95% min. coverage.

Jacket: $0.45 \, \text{silicon rubber jacket} \, \emptyset 3.45 \, \pm 0.2 \, \text{OD}$

Pair#	Color
1	Red / Black
2	Gray / Blue
3	Green/Yellow

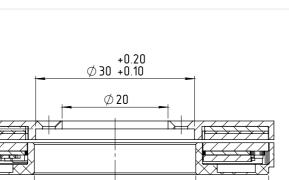
Related documents

DF-60 User Manual: Mechanical, Electrical and calibration setup.

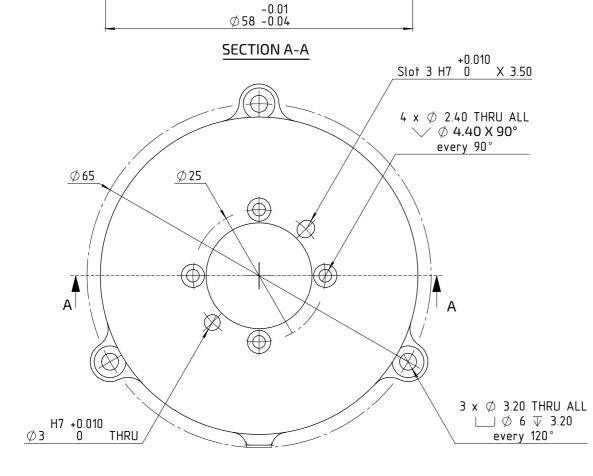
Optional Accessories

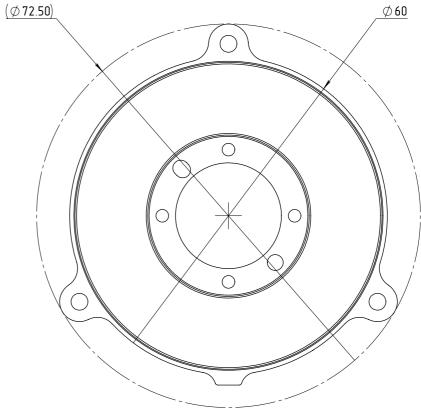
Demonstration Kit

DKIT-DF-60-32-SG-S0 - SSi interface DKIT-DF-60-32-IG-SO - BiSS interface

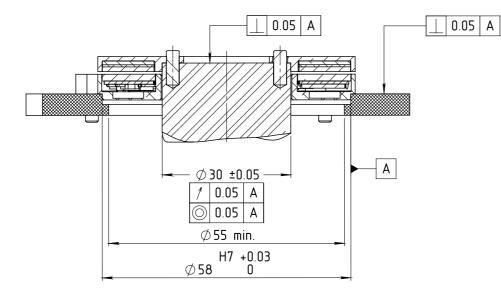

The Demo kit Includes: mounted encoder on rotary jig, and RS-422 to USB converter.

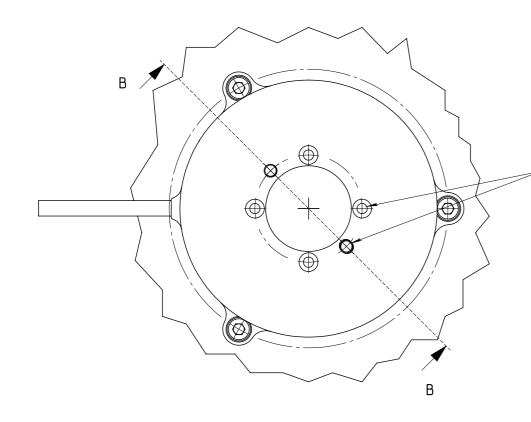
В

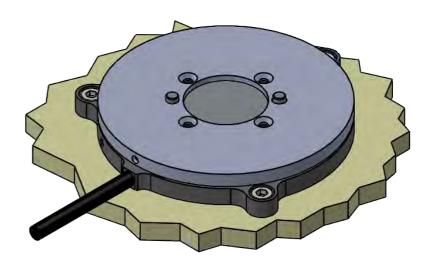

BIT


8.69-7.19-5.19-4.59-

1.42-


Ø 30.50


2.39		0	
<u> </u>	0		
1			


Unless Otherwise Specified		
Dimensions are in: mm Surface finish: N6		
Linear tolerances		
0.5-4.9: ±0.05 mm	5-30: ±0.1 mm	
31-120: ±0.15 mm	121-400: ±0.2 mm	

ABSOLUTE POSITION ROTARY ELECTRIC ENCODER™

SECTION B-B

Two \emptyset 3 dowel pins and four countersink M3 holes, see sheet 1 for details

Unless Otherwise Specified

Dimensions are in: mm	Surface finish: N6	
Linear tolerances		
0.5-4.9: ±0.05 mm	5-30: ±0.1 mm	
31-120: ±0.15 mm	121-400: ±0.2 mm	