

The VLX-64 is a member of the VLX / DX series The Electric Encoder™ is unique in being holistic, i.e., its of Electric Encoders™, based on Netzer Precision output reading is the averaged outcome of the whole area proprietary technology. The Electric Encoder™ offers of the rotor, This feature makes the Electric Encoder™ many advantages - some unparalleled for the induatrial forgiving to mounting tolerances, mechanical wander etc. automation market.

Low profile (6 mm).

Hollow, floating shaft.

Absolute position

No bearings or other contacting elements.

High resolution and precision.

High tolerance to temperature extremes, shock, moisture, EMI, RFI and Magnetic fields.

Very low weight.

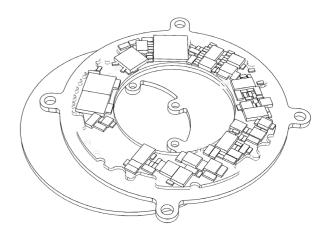
Holistic signal generation

Digital interfaces.

Electrical

Mechanical	
Allowable mounting eccentricity	±0.1 mm
Allowable rotor axial motion	±0.1 mm
Rotor inertia	3,669 gr · mm²
Total weight	28 gr
Outer Ø /Inner Ø/ Height	64/ 34 / 6 mm
Material (stator, rotor)	FR4
Nominal air gap (stator, rotor)	0.6 mm

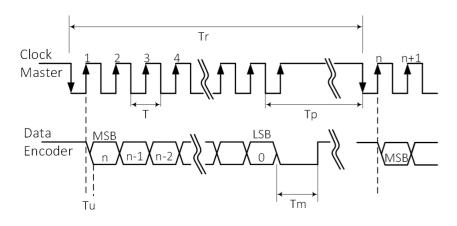
Supply voltage	5V ± 5%
Interconnection	Connector DF-13
Environmental	
Operating temperature range	-40°C to +65°C
Relative humidity	98% Non condensing
Shock endurance	100 g for 11 ms
Vibration endurance	20 g ,10 – 2000 Hz

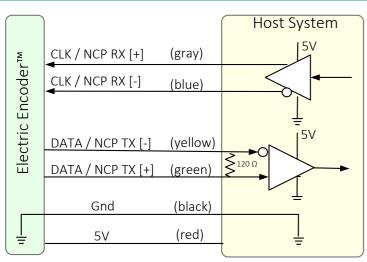

Characteristics	
Angular resolution	18 bits ; 262,144 CPR
Static error (accuracy)	< 20 mDeg
Maximum operational speed	1,500 rpm
Measurement range	Unlimited rotation
Position measurement	Absolute , single turn

The absence of components such as ball bearings, flexible couplers, glass disc, light sources and detectors, along with very low power consumption makes the Electric Encoder™ virtually failure free.

The internally shielded, DC operated Electric Encoder™ includes an electric field generator, a field receiver, a sinusoidal shaped dielectric rotor, and processing electronics.

The output of Electric Encoder™ is a digital serial with absolute position single turn. The combination of precision, low profile, low weight and high reliability have made Netzer Precision encoders particularly suitable to a wide variety of industrial automation applications.





Digital SSi Interface

Synchronous Serial Interface (**SSI)** is a point to point serial interface standard between a master (e.g. controller) and a slave (e.g. sensor) for digital data transmission.

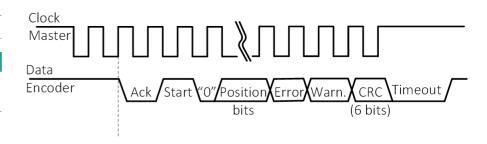
	Description	Recommendations
n	Total number of data bits	12- 22
T	Clock period	
f= 1/T	Clock frequency	0.5 - 2.0 MHz
Tu	Bit update time 200 nsed	
Тр	Pause time 26 - ∞ µsec	
Tm	Monoflop time >25 µsec	
Tr	Time between 2 adjacent requests $Tr > n*T+26 \mu s$	
fr=1/Tr	Data request frequency	

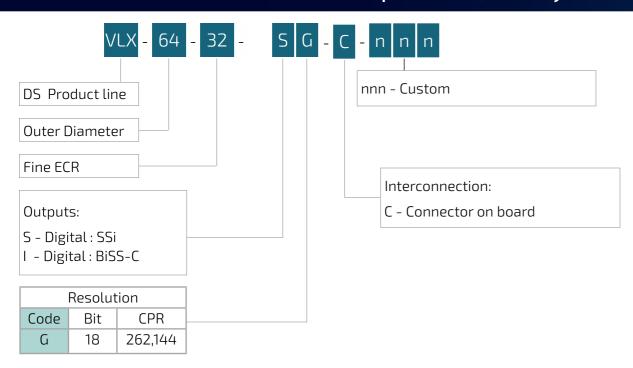
SSi / BiSS Output signal parameters		
Signal latency ~250 µSec		
Output code	Binary	
Serial output Differential RS-422		
Clock Differential RS-4		
Clock Frequency	0.5 ÷ 2.0 MHz	
Position update rate (Max)	30 KHz	
Current consumption	180 mA	

ec
S

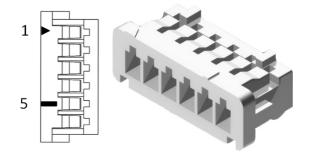
SSi / BiSS interface wires color code			
Clock +	Grey	Clock	
Clock -	Blue		
Data -	Yellow	Data	
Data +	Green	Data	
GND	Black	Ground	
+5V	Red	Power supply	

Software tools: (SSi / BiSS - C)


Advanced calibration and monitoring options are available by using the factory supplied **Electric Encoder Explorer** software, This facilitates proper mechanical mounting, offsets calibration and advanced signal monitoring.

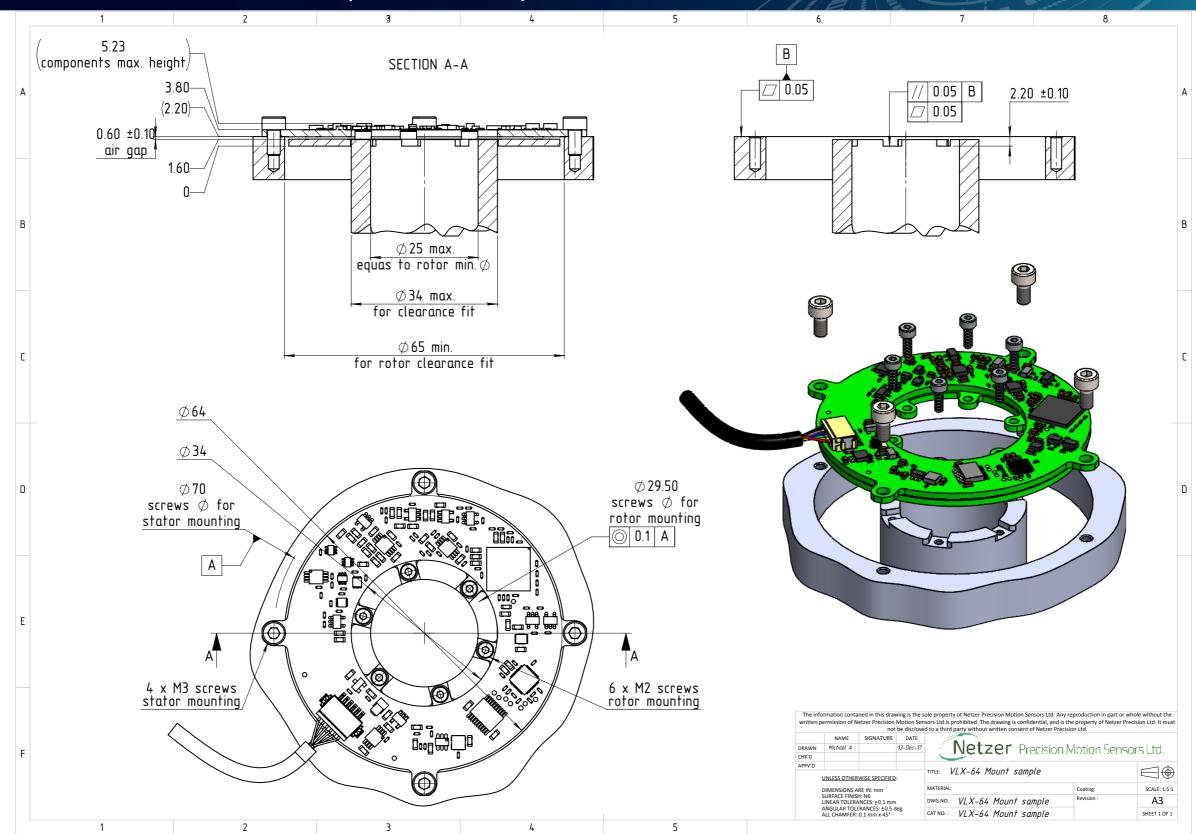

Digital BiSS-C Interface

BiSS – C Interface is unidirectional serial synchronous protocol for digital data transmission where the Encoder acts as "slave" transmits data according to "Master" clock. The BiSS protocol is designed in B mode and C mode (continuous mode) .The BiSS-C interface as the SSi is based on RS-422 standards.


bit #		Description	Default	Length
28	Ack	Period during which the encoder calculates the absolute position , one clock cycle	0	1/clock
27	Start	Encoder signal for "start" data transmit	1	1 bit
26	"0"	"start" bit follower	0	1 bit
826	AP	Absolute Position encoder data		
7	Warn.	Warning	1	1 bit
6	Error	Error	1	1 bit
The CRC polynomial for position, error and warning data is: $x^6 + x^1 + x^0$. It is transmitted MSB first and inverted. The start bit and "0" bit are omitted from the CRC calculation.		6 bits		
Timeout Elapse between the sequential "start"request cycle's.		25 µs		

Interconection - connector HRS DF13-6S-1.25C

#	Name	Function	
1	Clock+	Clock / NCP RX	
2	Clock-	CLUCK / INCP RX	
3	DATA-	Data / NCP TX	
4	DATA+		
5	GND	GND	
6	+5V	P.S.	


Related documents:

VLX User Manual: Mechanical, Electrical and calibration setup.

Demonstration Kit:

VLX-64DKIT-01: Includes ,mounted encoder on rotary jig , and RS-422 to USB converter.

